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Discrete Log

@ Choose a large prime p and a residue e coprime to p — 1.
@ Encode data using integers in Zp.
@ Encrypt data using the function x — x® mod p.

@ Decrypt using the function x — x’ mod p where ef = 1

mod (p—1).
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Discrete Log

@ More generally let S be a group (or a ring) and let e be a
unit modulo |S|.

@ Encode data using elements from S.

@ Encrypt data using the function x — x¢

@ The value of x is the plaintext, e is the (encryption) key and
x€ is the ciphertext.

@ Decrypt using the function x — x¢" where e is the
inverse of the unit e.

@ The discrete log problem is the problem of determining e
given both x and x®.

@ The usefulness of this system lies in the fact that we know
of no efficient, non-quantum algorithms, to solve this

particular discrete log problem - given x, x¢ and %ou tﬁziﬁq“i% n
calculate e.
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Discrete Log

Given only x¢€, there is no point in trying to determine x or e.

There are |S| candidates for x and ¢(|S|) candidates for e.
Hence we have to check |S|4(|S]) = |S|? values.

N
However, for any potential unit f, x® = ((xe)f 1) :
If, on the other hand, we are given both x and x€ then there is a

unique solution to the equation

e:Xf‘
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Discrete Log

@ Two classic examples that are frequently used, particularly
with encryption of websites:
@ Sis the group associated with an Elliptic Curve C;

@ Sisthering Z, where n = pq and p and q are distinct
primes - RSA cryptosystem.
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Discrete Log

@ Although Z, is a ring, we are only using one arithmetic
operation and so we are effectively working with a
semigroup.

@ Can we use a more general type of semigroup?

@ If Siis a semigroup and we use exponentiation as above
then we would expect

(xe)f = X.

@ This means that the monogenic semigroup (x) has index 1
and so is a cyclic group.
@ Hence S is a completely regular semigroup.
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Discrete Log

For the ring Zpq used with RSA, we have a completely regular
semigroup structure
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Completely Regular semigroups

So we can't just use our favourite semigroup (unless these
happen to be completely regular).

Given plaintext x, then all elements of S that we subsequently
work with belong to (x), then our arithmetic is essentially
restricted to a maximal subgroup of S.

Let us consider the structure of S in more detail.
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Completely Regular semigroups

A completely regular semigroup S is a semilattice
S =38[Y; Se]
of completely simple semigroups Se.

So x belongs to a completely simple semigroup, which we can
view as a Rees Matrix semigroup

M(G; I, A; P.

We can then equate x with an element of the form
X = (” g, )‘)
and SO UNIVERSITY OF
X€ — (i, (gp)e ' g, A) : Southampton
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Variants of Semigroups

Variants were originally introduced by authors such as
Lyapin, Magill, Chase in the 60s and 70s.

John Hickey then published more general papers on
variants of semigroups in the 1983 onwards and a number
of more recent papers have subsequently appeared.

If (S,-) is a semigroup and s € S then we can define a new
multiplication, xg, on S by

X*gy=X-S-Y.

It is easy to check that this gives an associative operation,
and so the system (S, xs) is a semigroup, referred to as a
variant of S and often denoted by SS. ERSTY OF
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Variants of Semigroups

If (G,-)is agroup and p € Gthen GP = (G, *p) is also a group,
with identity p*1 and where the inverse of x, in GP, is given by
the elementp=" - x~"-p~'in (G, ).

[p~" and x~' are the inverses of p and x in (G, )]

The map (G, ) — (G, *p) given by
X Xx-p

is a group isomorphism.

Hence if e € N then within GP, the element g¢, the e power of
the element g, is represented by the element

(gp)* g
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Variants of Semigroups

The discrete log problem in this case would involve finding e
given both g and (gp)®~'g.

If we knew p we could of course compute (gp)¢ and we have
the classic discrete problem over the original group.

Otherwise, it is a different story.
It is perfectly possible to solve the equation

)6—1

9p)* 'g=1(99)" g

in a non-trivial way.

If there are large numbers of such solutions then solving the
discrete log problem is much harder/infeasible.
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Euler’s totient function

The number of units modulo nis ¢(n) where ¢ is Euler’s totient
function. It is well known that

where p runs through the prime divisors of n.

So for the classic case, if G is a group and x € G and you know
that x = g€ for some g € G, and some unit e, then

X = (xf_1>f

and there are ¢(|G|) possible ‘solutions’. Southugllﬁimigt%n
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Schemmel’s totient

For our group variant problem, if we are given x = (gp)®~'g but
we don’t know p or e, how many solutions are there to the

equation

)9—1

(gp)° ' g =(99) " g7
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Schemmel’s totient

Schemmel’s totient number, S,(n) counts the number of
consecutiveterms 1 <m,m+1,...,m+ (r —1) < nwhich are
all coprime to n, or in other words, the number of r consecutive
units in Z,. It is easily shown that this function is also
multiplicative and that

S/(n) = nH (1 - ;) :
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Schemmel’s totient

In particular
2
S(n)y=S(m=n[[(1-%).
I1(-5)

counts the number of units m such that m — 1 is also a unit.
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Schemmel’s totient

Suppose g, p and e are fixed and we wish to find solutions
(g, f) to the equation

)6—1

(g0)* " = (99)" .

Suppose first that |G| is odd. We know that f has to be a unit,
but if f — 1 is also a unit and k is the inverse of f — 1 then

((am° )"

k
provides us with a solution. Here g = g~ ((gp)‘”) .

There are then at least S(|G|) such solutions. UNIVERSITY OF
Southampton
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A new totient

Suppose now that |G| is even. Then f must be odd and so f — 1
can’'t be a unit.

Notice that e is also odd and so

(gp)°~" = H?
for some h € G.

Suppose that f is a unit such that (f — 1)/2 is also a unit with
inverse k. Then

(hk)f—1 _ (hk)Z(f—1)/2 _ (h2)k(f—1)/2 — h2 _ (gp)ef1

and so g = g~ ' h* provides us with a solution.
UNIVERSITY OF
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A new totient

Let

T(n) = |{f|f and (f — 1)/2 are both units mod n}|

As an example, let p = 2g + 1 be a safe prime, where q is also
prime. The prime q is often referred to as a Sophie Germaine
prime.

If we encode our data from the group of units of Z,, then the
number of solutions to our previous problem is T(p — 1).
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A new totient

If p=2q+ 1 is a safe prime and G = U, then

T(p—1) = (p—3)/4 g=1 mod (4)
(p—7)/4 g=3 mod (4)°
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A new totient

To compute T(2n) we must remove from the set of residues
R ={1,...,2n} numbers f of the form

Q f=2x;

© f = xp where p|nand x is odd;

©Q f=1orf=1+2xpwhere p|nand gcd(f,n) = 1;
Q =1+ 4x where gcd(x,n) = ged(f, n) = 1.
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A new totient

In counting the values in (4), we eventually arrive at a simple
diophantine equation of the form

1+4x =ry <2n

where r is an odd divisor of n.

Counting the solutions for this equation is relatively easy except
that there are 2 possible cases depending on whether r is
congruent to 1 or 3 mod 4.
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A new totient

Let n > 1 be an odd integer with w distinct prime divisors. Then

'T(Zn)_S(n)—1'§3“—2“+1.

2 2
If n = g™ where q is prime and m > 0, then

T(2n) = (S(n) —1)/2 when g =3 mod (4) and
T(2n)=(S(n)+1)/2whenqg=1 mod (4).
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A new totient

For the specific example that we gave where 2n=p — 1 = 2q,
the situation is even more interesting.

Proposition
If G = U, where p = 2q + 1 is a safe prime, then there are
p—5=2(q — 2) solutions.
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@ Each unit f > 1 with the property that (f — 1)/2 is also a
unit, provides a solution, w say.

@ Notice that in this case, —w is also a solution.

e If (f—1)/2is not a unit it is because it is even, in which
case (f —1)/4 may be a unit.
@ If notthen (f—1)/4 is even and so (f — 1)/8 may be a unit.

@ Continuing in this fashion we see that there is a positive
integer m such that (f —1)/2™ is a unit.
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Proof

@ Now it is well known that if p =3 mod (4) is a prime and if
Y € Zp then either y or —y, but not both, has a square root
modulo p (the square root is in fact y(Pt1)/4),

@ If ¢ = K2 then either h or —h will have a square root, h; say,
and so ¢ = h}.

@ But then either hy or —hy will have a square root, h say,
and so ¢ = H§.

@ Continuing in this fashion we see that ¢ = h2,",.

@ So if k is the multiplicative inverse of (f — 1)/2™ then
w = £hk _, will be solutions

@ Hence every unit f > 1 in Z, provides two solutions and
since |Up—1| = g — 1 the result follows.
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A new totient

So use of a completely simple semigroup rather than a group
would appear to give more protection from ‘brute force’ attacks.
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A new totient

If n=2mfor e > 0and m > 1is odd and if w is the number of
distinct prime factors of m, then

@ T(1)=T(2)=0and T(2°) =2°2for e > 2;
@ T(n) =2°25(m) for e > 2;
o |T(m 3R < (32— 2 +1)/2for e = 1;

° ‘T(n)—%‘ < (8% — 2+ +1)/2 when e = 0;
@ T(n)=(S(m)—1)/2whene=0andw = 1;
@ T(n)=(S(m)—1)/2t1whene=0andw = 2.
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A new totient

In practice, there are certain known plaintext attacks that can
sometimes reduce this discrete log problem to the more classic
case and choosing a random value for p for each encryption

will help mitigate this.
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A new totient

For example, choose e € U, and s € Zp, for some m > n and
let the pair (s, e) be the secret key.

Then given plaintext g € G, let i be a random value in Z, and
define p; = H(i & s) where & is the bitwise XOR operator and
H is a suitably chosen cryptographic hash function whose
image coincides with G.

The ciphertext is then the pair (i, (gp;)¢~'g), and anyone with
access to the key, can replicate p; and decrypt.

However, even if an attacker can identify the correct value of p;
amongst all the T(n) or more solutions , it will be relatively
ineffective as we shall use a different value of p; for each
encryption.
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A new totient

CS

(a) no encryption (b) group (c) semigroup

Figure: discrete log encryption on similar blocks
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For the ring Zpq used with RSA, we have a completely regular
semigroup structure
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Let m be a positive integer and let py, . . ., pm be distinct primes
andlet /= {1,...,m}. Let n =[], p; and for any non-empty
subset S C /, let ng =[], pi and denote by S=1\S, so that
n = ngng. Define

Us = {r@x\x € Ups}t = r@(U,,s, *, r@) 2 Upg,

where Ung = {1,...,ns — 1} is the group of units modulo ng
and let Uy = {0}.
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For any non-empty subset S C |, Us is a subgroup of the
multiplicative semigroup Z, and is isomorphic to Uy,.

Moreover _

Zp = USQUS
is a strong semilattice of groups, S[Y; Us| in which Y is the
boolean algebra P().

The structure maps are given by qﬁ :Us— UrforTCSCI

63(x0) = (n7) ' x

-1 . . .
where (n) "~ is the inverse of ny in Uy,
v
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Non square-free case

Joint work with Will Warhurst.

Suppose now that
n=p.. .psr

with each p; > 0.
What does Z, look like in this case?
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Non square-free case

Joint work with Will Warhurst.
Suppose now that

n=p.. .psr
with each p; > 0.
What does Z,, look like in this case?

Ifn=p"...p;r where each p; is prime and each m; > 0, then
Zn, is a semilattice of stratified extensions of groups

Lip = S[P(I); Re]

where | = {1, ..., m} and each R, is a stratified extension of a
group.
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Non square-free case

Define the base of a semigroup S to be the subset

Base(S) = ﬂ Sm.

m>0

If Base(S) = {0} or Base(S) = @ then Girillet called this a
stratified semigroup.

A semigroup S is then called a stratified extension of Base(S) if
Base(S) # Q.

The name signifying the fact that in this case S is an ideal
extension of Base(S) by a stratified semigroup with zero.
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Non square-free case

Let S be a stratified extension of Base(S).

@ The layers of S are defined to be the sets S, = S™\ S™1,
m>1;

@ Every element of S lies either in the base of S or in exactly
one layer of S, and if s € Sy, then m is the depth of s.

@ If S has finitely many layers then the numbers of layers is
called the height of S.

@ The layer Sy generates every element of S\ Base(S) and is
contained in any generating set of S.
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Non square-free case

Suppose that S is a semigroup.
@ Reg(S) C Base(S). Hence if S is regular, Base(S) = S.
Q E(S) = E(Base(S)).

© Ifse S\ Base(S) then |Js| = 1, where Js is the J—class of
s.

v
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Non square-free case

Proposition

Let T and R be any semigroups. Then there exists a stratified
extension S such that T C Base(S) and S/ T = R. Moreover, if
R is stratified without a zero then T = Base(S).
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Non square-free case

Let n=p' ... psr where each p; is prime and each m; > 0.

Lp= S[P(I); Re]

Let e = [[;cx pF and let Re = {x € Z|x™ = e for some m}.

This is a stratified extension of U, . where if x € Re is in the ith

layer then
x=]1] pffu
jek
where u € Upand 0 < g; < ¢; and min{g;|g; # €;} = I.
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Non square-free case

As an example, if n =12 = 22 x 3, then

P(l) = {{2,3}, {2}, {3}, 2}

and we have four subsemigroups

R{273} = {6, 12} where Base(F?{273}) = {12}

R{Q} = {2, 4,8, 10} where Base(R{g}) = {4, 8} and {2, 10}
forms layer 1.

Rysy = {3,9} which is a group.

Ry = {1,5,7,11} which is the group of units mod 12.
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Non square-free case

The semilattice structure can be pictured as

1,5,7,11}
Ro / \{2 10}
VRN (3,9}
Rys) R N6}/{4 8}
NS
Ri2,3 {12}
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