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Discrete Log

Choose a large prime p and a residue e coprime to p − 1.
Encode data using integers in Zp.
Encrypt data using the function x 7→ xe mod p.
Decrypt using the function x 7→ x f mod p where ef ≡ 1
mod (p − 1).



Discrete Log

More generally let S be a group (or a ring) and let e be a
unit modulo |S|.
Encode data using elements from S.
Encrypt data using the function x 7→ xe

The value of x is the plaintext, e is the (encryption) key and
xe is the ciphertext.
Decrypt using the function x 7→ xe−1

where e−1 is the
inverse of the unit e.
The discrete log problem is the problem of determining e
given both x and xe.
The usefulness of this system lies in the fact that we know
of no efficient, non-quantum algorithms, to solve this
particular discrete log problem - given x , xe and S,
calculate e.



Discrete Log

Given only xe, there is no point in trying to determine x or e.

There are |S| candidates for x and ϕ(|S|) candidates for e.
Hence we have to check |S|ϕ(|S|) ∼= |S|2 values.

However, for any potential unit f , xe =
(
(xe)f−1

)f
.

If, on the other hand, we are given both x and xe then there is a
unique solution to the equation

xe = x f .



Discrete Log

Two classic examples that are frequently used, particularly
with encryption of websites:
S is the group associated with an Elliptic Curve C;
S is the ring Zn where n = pq and p and q are distinct
primes - RSA cryptosystem.



Discrete Log

Although Zn is a ring, we are only using one arithmetic
operation and so we are effectively working with a
semigroup.
Can we use a more general type of semigroup?
If S is a semigroup and we use exponentiation as above
then we would expect (

xe)f
= x .

This means that the monogenic semigroup ⟨x⟩ has index 1
and so is a cyclic group.
Hence S is a completely regular semigroup.



Discrete Log

For the ring Zpq used with RSA, we have a completely regular
semigroup structure
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Completely Regular semigroups

So we can’t just use our favourite semigroup (unless these
happen to be completely regular).

Given plaintext x , then all elements of S that we subsequently
work with belong to ⟨x⟩, then our arithmetic is essentially
restricted to a maximal subgroup of S.

Let us consider the structure of S in more detail.



Completely Regular semigroups

A completely regular semigroup S is a semilattice

S = S[Y ;Se]

of completely simple semigroups Se.

So x belongs to a completely simple semigroup, which we can
view as a Rees Matrix semigroup

M[G; I,Λ;P].

We can then equate x with an element of the form

x = (i , g, λ)

and so
xe =

(
i , (gpλi)

e−1 g, λ
)
.



Variants of Semigroups

Variants were originally introduced by authors such as
Lyapin, Magill, Chase in the 60s and 70s.
John Hickey then published more general papers on
variants of semigroups in the 1983 onwards and a number
of more recent papers have subsequently appeared.
If (S, ·) is a semigroup and s ∈ S then we can define a new
multiplication, ∗s, on S by

x ∗s y = x · s · y .

It is easy to check that this gives an associative operation,
and so the system (S, ∗s) is a semigroup, referred to as a
variant of S and often denoted by Ss.



Variants of Semigroups

If (G, ·) is a group and p ∈ G then Gp = (G, ∗p) is also a group,
with identity p−1 and where the inverse of x , in Gp, is given by
the element p−1 · x−1 · p−1 in (G, ·).

[p−1 and x−1 are the inverses of p and x in (G, ·)]

The map (G, ·) → (G, ∗p) given by

x 7→ x · p−1

is a group isomorphism.

Hence if e ∈ N then within Gp, the element ge, the eth power of
the element g, is represented by the element

(gp)e−1g

in (G, ·).



Variants of Semigroups

The discrete log problem in this case would involve finding e
given both g and (gp)e−1g.

If we knew p we could of course compute (gp)e and we have
the classic discrete problem over the original group.

Otherwise, it is a different story.

It is perfectly possible to solve the equation

(gp)e−1 g = (gq)f−1 g

in a non-trivial way.

If there are large numbers of such solutions then solving the
discrete log problem is much harder/infeasible.



Euler’s totient function

The number of units modulo n is ϕ(n) where ϕ is Euler’s totient
function. It is well known that

ϕ(n) = n
∏
p|n

(
1 − 1

p

)

where p runs through the prime divisors of n.

So for the classic case, if G is a group and x ∈ G and you know
that x = ge for some g ∈ G, and some unit e, then

x =
(

x f−1
)f

and there are ϕ(|G|) possible ‘solutions’.



Schemmel’s totient

For our group variant problem, if we are given x = (gp)e−1g but
we don’t know p or e, how many solutions are there to the
equation

(gp)e−1 g = (gq)f−1 g?



Schemmel’s totient

Schemmel’s totient number, Sr (n) counts the number of
consecutive terms 1 ≤ m,m + 1, . . . ,m + (r − 1) ≤ n which are
all coprime to n, or in other words, the number of r consecutive
units in Zn. It is easily shown that this function is also
multiplicative and that

Sr (n) = n
∏
p|n

(
1 − r

p

)
.



Schemmel’s totient

In particular

S(n) = S2(n) = n
∏
p|n

(
1 − 2

p

)
.

counts the number of units m such that m − 1 is also a unit.



Schemmel’s totient

Suppose g, p and e are fixed and we wish to find solutions
(q, f ) to the equation

(gp)e−1 = (gq)f−1 .

Suppose first that |G| is odd. We know that f has to be a unit,
but if f − 1 is also a unit and k is the inverse of f − 1 then(

(gp)e−1
)k

provides us with a solution. Here q = g−1
(
(gp)e−1

)k
.

There are then at least S(|G|) such solutions.



A new totient

Suppose now that |G| is even. Then f must be odd and so f − 1
can’t be a unit.

Notice that e is also odd and so

(gp)e−1 = h2

for some h ∈ G.

Suppose that f is a unit such that (f − 1)/2 is also a unit with
inverse k . Then

(hk )f−1 = (hk )2(f−1)/2 = (h2)k(f−1)/2 = h2 = (gp)e−1

and so q = g−1hk provides us with a solution.

So how many such solutions are there?



A new totient

Let

T (n) = |{f |f and (f − 1)/2 are both units mod n}|

As an example, let p = 2q + 1 be a safe prime, where q is also
prime. The prime q is often referred to as a Sophie Germaine
prime.
If we encode our data from the group of units of Zp, then the
number of solutions to our previous problem is T (p − 1).



A new totient

Theorem

If p = 2q + 1 is a safe prime and G = Up then

T (p − 1) =

{
(p − 3)/4 q ≡ 1 mod (4)
(p − 7)/4 q ≡ 3 mod (4)

.



A new totient

To compute T (2n) we must remove from the set of residues
R = {1, . . . , 2n} numbers f of the form

1 f = 2x ;
2 f = xp where p|n and x is odd;
3 f = 1 or f = 1 + 2xp where p|n and gcd(f ,n) = 1;
4 f = 1 + 4x where gcd(x ,n) = gcd(f , n) = 1.



A new totient

In counting the values in (4), we eventually arrive at a simple
diophantine equation of the form

1 + 4x = ry ≤ 2n

where r is an odd divisor of n.

Counting the solutions for this equation is relatively easy except
that there are 2 possible cases depending on whether r is
congruent to 1 or 3 mod 4.



A new totient

Theorem

Let n > 1 be an odd integer with ω distinct prime divisors. Then∣∣∣∣T (2n)− S(n)− 1
2

∣∣∣∣ ≤ 3ω − 2ω + 1
2

.

If n = qm where q is prime and m > 0, then
T (2n) = (S(n)− 1)/2 when q ≡ 3 mod (4) and
T (2n) = (S(n) + 1)/2 when q ≡ 1 mod (4).



A new totient

For the specific example that we gave where 2n = p − 1 = 2q,
the situation is even more interesting.

Proposition
If G = Up where p = 2q + 1 is a safe prime, then there are
p − 5 = 2(q − 2) solutions.



Proof

Each unit f > 1 with the property that (f − 1)/2 is also a
unit, provides a solution, w say.
Notice that in this case, −w is also a solution.
If (f − 1)/2 is not a unit it is because it is even, in which
case (f − 1)/4 may be a unit.
If not then (f − 1)/4 is even and so (f − 1)/8 may be a unit.
Continuing in this fashion we see that there is a positive
integer m such that (f − 1)/2m is a unit.



Proof

Now it is well known that if p ≡ 3 mod (4) is a prime and if
y ∈ Zp then either y or −y , but not both, has a square root
modulo p (the square root is in fact y (p+1)/4).
If c = h2 then either h or −h will have a square root, h1 say,
and so c = h4

1.
But then either h1 or −h1 will have a square root, h2 say,
and so c = h8

2.
Continuing in this fashion we see that c = h2m

m−1.
So if k is the multiplicative inverse of (f − 1)/2m then
w = ±hk

m−1 will be solutions
Hence every unit f > 1 in Zp provides two solutions and
since |Up−1| = q − 1 the result follows.



A new totient

So use of a completely simple semigroup rather than a group
would appear to give more protection from ‘brute force’ attacks.



A new totient

If n = 2em for e ≥ 0 and m > 1 is odd and if ω is the number of
distinct prime factors of m, then

T (1) = T (2) = 0 and T (2e) = 2e−2 for e ≥ 2;
T (n) = 2e−2S(m) for e ≥ 2;∣∣∣T (n)− S(m)−1

2

∣∣∣ ≤ (3ω − 2ω + 1)/2 for e = 1;∣∣∣T (n)− S(m)−1
2

∣∣∣ ≤ (3ω − 2ω+1 + 1)/2 when e = 0;

T (n) = (S(m)− 1)/2 when e = 0 and ω = 1;
T (n) = (S(m)− 1)/2 ± 1 when e = 0 and ω = 2.



A new totient

In practice, there are certain known plaintext attacks that can
sometimes reduce this discrete log problem to the more classic
case and choosing a random value for p for each encryption
will help mitigate this.



A new totient

For example, choose e ∈ Un and s ∈ Zm for some m ≥ n and
let the pair (s, e) be the secret key.

Then given plaintext g ∈ G, let i be a random value in Zm and
define pi = H(i ⊕ s) where ⊕ is the bitwise XOR operator and
H is a suitably chosen cryptographic hash function whose
image coincides with G.

The ciphertext is then the pair (i , (gpi)
e−1g), and anyone with

access to the key, can replicate pi and decrypt.

However, even if an attacker can identify the correct value of pi
amongst all the T (n) or more solutions , it will be relatively
ineffective as we shall use a different value of pi for each
encryption.



A new totient

(a) no encryption (b) group (c) semigroup

Figure: discrete log encryption on similar blocks



Zpq

For the ring Zpq used with RSA, we have a completely regular
semigroup structure
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Zn

Let m be a positive integer and let p1, . . . ,pm be distinct primes
and let I = {1, . . . ,m}. Let n =

∏
i∈I pi and for any non-empty

subset S ⊆ I, let nS =
∏

i∈S pi and denote by S = I \ S, so that
n = nSnS. Define

US = {nSx |x ∈ UnS} = nS(UnS , ∗,nS)
∼= UnS ,

where UnS = {1, . . . , nS − 1} is the group of units modulo nS
and let UØ = {0}.



Zn

Theorem
For any non-empty subset S ⊆ I, US is a subgroup of the
multiplicative semigroup Zn, and is isomorphic to UnS .
Moreover

Zn =
⋃̇

S⊆I
US

is a strong semilattice of groups, S[Y ;US] in which Y is the
boolean algebra P(I).
The structure maps are given by ϕS

T : US → UT for T ⊆ S ⊆ I

ϕS
T (x) =

(
nT

)−1 x

where
(
nT

)−1 is the inverse of nT in UnT .



Non square-free case

Joint work with Will Warhurst.

Suppose now that
n = pe1

1 . . . pem
m

with each pi > 0.
What does Zn look like in this case?



Non square-free case

Joint work with Will Warhurst.

Suppose now that
n = pe1

1 . . . pem
m

with each pi > 0.
What does Zn look like in this case?

Theorem

If n = pe1
1 . . . pem

m where each pi is prime and each mi > 0, then
Zn is a semilattice of stratified extensions of groups

Zn = S[P(I);Re]

where I = {1, . . . ,m} and each Re is a stratified extension of a
group.



Non square-free case

Define the base of a semigroup S to be the subset

Base(S) =
⋂

m>0

Sm.

If Base(S) = {0} or Base(S) = Ø then Grillet called this a

stratified semigroup.

A semigroup S is then called a stratified extension of Base(S) if
Base(S) ̸= Ø.
The name signifying the fact that in this case S is an ideal
extension of Base(S) by a stratified semigroup with zero.



Non square-free case

Let S be a stratified extension of Base(S).
The layers of S are defined to be the sets Sm = Sm \Sm+1,
m ≥ 1;
Every element of S lies either in the base of S or in exactly
one layer of S, and if s ∈ Sm then m is the depth of s.
If S has finitely many layers then the numbers of layers is
called the height of S.
The layer S1 generates every element of S \Base(S) and is
contained in any generating set of S.



Non square-free case

Proposition
Suppose that S is a semigroup.

1 Reg(S) ⊆ Base(S). Hence if S is regular, Base(S) = S.
2 E(S) = E(Base(S)).

3 If s ∈ S \ Base(S) then |Js| = 1, where Js is the J−class of
s.



Non square-free case

Proposition
Let T and R be any semigroups.Then there exists a stratified
extension S such that T ⊆ Base(S) and S/T ∼= R. Moreover, if
R is stratified without a zero then T = Base(S).



Non square-free case

Let n = pe1
1 . . . pem

m where each pi is prime and each mi > 0.

Zn = S[P(I);Re]

Let e =
∏

i∈K pei
i and let Re = {x ∈ Zn|xm = e for some m}.

This is a stratified extension of Un/e where if x ∈ Re is in the i th

layer then
x =

∏
j∈K

pgj
j u

where u ∈ Un and 0 < gj ≤ ej and min{gj |gj ̸= ej} = i .



Non square-free case

As an example, if n = 12 = 22 × 3, then

P(I) = {{2,3}, {2}, {3},Ø}

and we have four subsemigroups
R{2,3} = {6,12} where Base(R{2,3}) = {12}.
R{2} = {2,4, 8, 10} where Base(R{2}) = {4, 8} and {2, 10}
forms layer 1.
R{3} = {3,9} which is a group.
RØ = {1,5, 7, 11} which is the group of units mod 12.



Non square-free case

The semilattice structure can be pictured as

RØ

R{3} R{2}

R{2,3}

{1, 5,7, 11}

{3, 9}

{2, 10}

{4, 8}{6}

{12}


