Completely Regular semigroups and cryptography and Stratified semigroups

Jim Renshaw

October 30, 2025

Outline

- Choose a large prime p and a residue e coprime to p-1.
- Encode data using integers in \mathbb{Z}_p .
- Encrypt data using the function $x \mapsto x^e \mod p$.
- Decrypt using the function $x \mapsto x^f \mod p$ where $ef \equiv 1 \mod (p-1)$.

- More generally let S be a group (or a ring) and let e be a unit modulo |S|.
- Encode data using elements from S.
- Encrypt data using the function $x \mapsto x^e$
- The value of x is the plaintext, e is the (encryption) key and x^e is the ciphertext.
- Decrypt using the function $x \mapsto x^{e^{-1}}$ where e^{-1} is the inverse of the unit e.
- The discrete log problem is the problem of determining e given both x and x^e.
- The usefulness of this system lies in the fact that we know
 of no efficient, non-quantum algorithms, to solve this
 particular discrete log problem given x, xe and
 calculate e.

Given only x^e , there is no point in trying to determine x or e.

There are |S| candidates for x and $\phi(|S|)$ candidates for e. Hence we have to check $|S|\phi(|S|) \cong |S|^2$ values.

However, for any potential unit $f, x^e = ((x^e)^{f^{-1}})^f$.

If, on the other hand, we are given both x and x^e then there is a unique solution to the equation

$$x^e = x^f$$
.

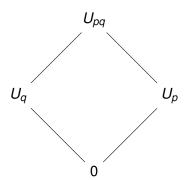
- Two classic examples that are frequently used, particularly with encryption of websites:
- S is the group associated with an Elliptic Curve C;
- *S* is the ring \mathbb{Z}_n where n = pq and p and q are distinct primes RSA cryptosystem.

- Although \mathbb{Z}_n is a ring, we are only using one arithmetic operation and so we are effectively working with a semigroup.
- Can we use a more general type of semigroup?
- If S is a semigroup and we use exponentiation as above then we would expect

$$(x^e)^f = x.$$

- This means that the monogenic semigroup \(\lambda x \rangle \) has index 1
 and so is a cyclic group.
- Hence S is a completely regular semigroup.

For the ring \mathbb{Z}_{pq} used with RSA, we have a completely regular semigroup structure



Completely Regular semigroups

So we can't just use our favourite semigroup (unless these happen to be completely regular).

Given plaintext x, then all elements of S that we subsequently work with belong to $\langle x \rangle$, then our arithmetic is essentially restricted to a maximal subgroup of S.

Let us consider the structure of S in more detail.

Completely Regular semigroups

A completely regular semigroup S is a semilattice

$$S = S[Y; S_e]$$

of completely simple semigroups S_e .

So x belongs to a completely simple semigroup, which we can view as a Rees Matrix semigroup

$$\mathcal{M}[G; I, \Lambda; P].$$

We can then equate x with an element of the form

$$x = (i, g, \lambda)$$

and so

$$x^e = (i, (gp_{\lambda i})^{e-1} g, \lambda).$$

Variants of Semigroups

- Variants were originally introduced by authors such as Lyapin, Magill, Chase in the 60s and 70s.
- John Hickey then published more general papers on variants of semigroups in the 1983 onwards and a number of more recent papers have subsequently appeared.
- If (S, \cdot) is a semigroup and $s \in S$ then we can define a new multiplication, $*_s$, on S by

$$x *_{s} y = x \cdot s \cdot y$$
.

It is easy to check that this gives an associative operation, and so the system $(S, *_s)$ is a semigroup, referred to as a *variant of S* and often denoted by S^s .

Variants of Semigroups

If (G, \cdot) is a group and $p \in G$ then $G^p = (G, *_p)$ is also a group, with identity p^{-1} and where the inverse of x, in G^p , is given by the element $p^{-1} \cdot x^{-1} \cdot p^{-1}$ in (G, \cdot) .

 $[p^{-1} \text{ and } x^{-1} \text{ are the inverses of } p \text{ and } x \text{ in } (G, \cdot)]$

The map $(G, \cdot) \rightarrow (G, *_p)$ given by

$$x \mapsto x \cdot p^{-1}$$

is a group isomorphism.

Hence if $e \in \mathbb{N}$ then within G^p , the element g^e , the e^{th} power of the element g, is represented by the element

$$(gp)^{e-1}g$$

Variants of Semigroups

The discrete log problem in this case would involve finding e given both g and $(gp)^{e-1}g$.

If we knew p we could of course compute $(gp)^e$ and we have the classic discrete problem over the original group.

Otherwise, it is a different story.

It is perfectly possible to solve the equation

$$(gp)^{e-1}g = (gq)^{f-1}g$$

in a non-trivial way.

If there are large numbers of such solutions then solving the discrete log problem is much harder/infeasible.

Euler's totient function

The number of units modulo n is $\phi(n)$ where ϕ is Euler's totient function. It is well known that

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

where p runs through the prime divisors of n.

So for the classic case, if G is a group and $x \in G$ and you know that $x = g^e$ for some $g \in G$, and some unit e, then

$$X = \left(X^{f^{-1}}\right)^f$$

and there are $\phi(|G|)$ possible 'solutions'.

For our group variant problem, if we are given $x = (gp)^{e-1}g$ but we don't know p or e, how many solutions are there to the equation

$$(gp)^{e-1}g = (gq)^{f-1}g?$$

Schemmel's totient number, $S_r(n)$ counts the number of consecutive terms $1 \le m, m+1, \ldots, m+(r-1) \le n$ which are all coprime to n, or in other words, the number of r consecutive units in \mathbb{Z}_n . It is easily shown that this function is also multiplicative and that

$$S_r(n) = n \prod_{p|n} \left(1 - \frac{r}{p}\right).$$

In particular

$$S(n) = S_2(n) = n \prod_{p|n} \left(1 - \frac{2}{p}\right).$$

counts the number of units m such that m-1 is also a unit.

Suppose g, p and e are fixed and we wish to find solutions (q, f) to the equation

$$(gp)^{e-1} = (gq)^{f-1}$$
.

Suppose first that |G| is odd. We know that f has to be a unit, but if f-1 is also a unit and k is the inverse of f-1 then

$$((gp)^{e-1})^k$$

provides us with a solution. Here $q = g^{-1} \left((gp)^{e-1} \right)^k$.

There are then at least S(|G|) such solutions.

Suppose now that |G| is even. Then f must be odd and so f-1 can't be a unit.

Notice that e is also odd and so

$$(gp)^{e-1}=h^2$$

for some $h \in G$.

Suppose that f is a unit such that (f-1)/2 is also a unit with inverse k. Then

$$(h^k)^{f-1} = (h^k)^{2(f-1)/2} = (h^2)^{k(f-1)/2} = h^2 = (gp)^{e-1}$$

and so $q = g^{-1}h^k$ provides us with a solution.

So how many such solutions are there?

Let

$$T(n) = |\{f|f \text{ and } (f-1)/2 \text{ are both units mod } n\}|$$

As an example, let p = 2q + 1 be a *safe* prime, where q is also prime. The prime q is often referred to as a *Sophie Germaine* prime.

If we encode our data from the group of units of \mathbb{Z}_p , then the number of solutions to our previous problem is T(p-1).

Theorem

If
$$p = 2q + 1$$
 is a safe prime and $G = U_p$ then

$$T(p-1) = \begin{cases} (p-3)/4 & q \equiv 1 \mod (4) \\ (p-7)/4 & q \equiv 3 \mod (4) \end{cases}$$

To compute T(2n) we must remove from the set of residues $R = \{1, ..., 2n\}$ numbers f of the form

- **1** f = 2x;
- 2 f = xp where p|n and x is odd;
- **3** f = 1 or f = 1 + 2xp where p|n and gcd(f, n) = 1;
- **1** f = 1 + 4x where gcd(x, n) = gcd(f, n) = 1.

In counting the values in (4), we eventually arrive at a simple diophantine equation of the form

$$1+4x=ry\leq 2n$$

where r is an odd divisor of n.

Counting the solutions for this equation is relatively easy except that there are 2 possible cases depending on whether r is congruent to 1 or 3 mod 4.

Theorem

Let n > 1 be an odd integer with ω distinct prime divisors. Then

$$\left|T(2n)-\frac{S(n)-1}{2}\right|\leq \frac{3^{\omega}-2^{\omega}+1}{2}.$$

If $n=q^m$ where q is prime and m>0, then T(2n)=(S(n)-1)/2 when $q\equiv 3 \mod (4)$ and T(2n)=(S(n)+1)/2 when $q\equiv 1 \mod (4)$.

For the specific example that we gave where 2n = p - 1 = 2q, the situation is even more interesting.

Proposition

If $G = U_p$ where p = 2q + 1 is a safe prime, then there are p - 5 = 2(q - 2) solutions.

Proof

- Each unit f > 1 with the property that (f 1)/2 is also a unit, provides a solution, w say.
- Notice that in this case, -w is also a solution.
- If (f-1)/2 is not a unit it is because it is even, in which case (f-1)/4 may be a unit.
- If not then (f-1)/4 is even and so (f-1)/8 may be a unit.
- Continuing in this fashion we see that there is a positive integer m such that $(f-1)/2^m$ is a unit.

Proof

- Now it is well known that if $p \equiv 3 \mod (4)$ is a prime and if $y \in \mathbb{Z}_p$ then either y or -y, but not both, has a square root modulo p (the square root is in fact $y^{(p+1)/4}$).
- If $c = h^2$ then either h or -h will have a square root, h_1 say, and so $c = h_1^4$.
- But then either h_1 or $-h_1$ will have a square root, h_2 say, and so $c = h_2^8$.
- Continuing in this fashion we see that $c = h_{m-1}^{2^m}$.
- So if k is the multiplicative inverse of $(f-1)/2^m$ then $w = \pm h_{m-1}^k$ will be solutions
- Hence every unit f > 1 in \mathbb{Z}_p provides two solutions and since $|U_{p-1}| = q-1$ the result follows.

School of Mathematics

So use of a completely simple semigroup rather than a group would appear to give more protection from 'brute force' attacks.

If $n = 2^e m$ for $e \ge 0$ and m > 1 is odd and if ω is the number of distinct prime factors of m, then

- T(1) = T(2) = 0 and $T(2^e) = 2^{e-2}$ for $e \ge 2$;
- $T(n) = 2^{e-2}S(m)$ for $e \ge 2$;
- $\left| T(n) \frac{S(m)-1}{2} \right| \le (3^{\omega} 2^{\omega} + 1)/2 \text{ for } e = 1;$
- $\left|T(n) \frac{S(m)-1}{2}\right| \le (3^{\omega} 2^{\omega+1} + 1)/2$ when e = 0;
- T(n) = (S(m) 1)/2 when e = 0 and $\omega = 1$;
- $T(n) = (S(m) 1)/2 \pm 1$ when e = 0 and $\omega = 2$.

In practice, there are certain *known plaintext attacks* that can sometimes reduce this discrete log problem to the more classic case and choosing a random value for *p* for each encryption will help mitigate this.

For example, choose $e \in U_n$ and $s \in \mathbb{Z}_m$ for some $m \ge n$ and let the pair (s, e) be the secret key.

Then given plaintext $g \in G$, let i be a random value in \mathbb{Z}_m and define $p_i = H(i \oplus s)$ where \oplus is the bitwise XOR operator and H is a suitably chosen cryptographic hash function whose image coincides with G.

The ciphertext is then the pair $(i, (gp_i)^{e-1}g)$, and anyone with access to the key, can replicate p_i and decrypt.

However, even if an attacker can identify the correct value of p_i amongst all the T(n) or more solutions, it will be relatively ineffective as we shall use a different value of p_i for each encryption.

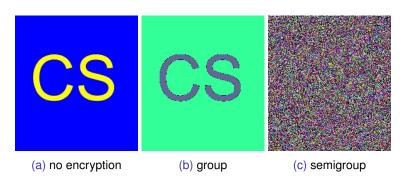
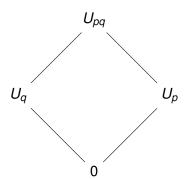


Figure: discrete log encryption on similar blocks

For the ring \mathbb{Z}_{pq} used with RSA, we have a completely regular semigroup structure



Let m be a positive integer and let p_1, \ldots, p_m be distinct primes and let $I = \{1, \ldots, m\}$. Let $n = \prod_{i \in I} p_i$ and for any non-empty subset $S \subseteq I$, let $n_S = \prod_{i \in S} p_i$ and denote by $\overline{S} = I \setminus S$, so that $n = n_{\overline{S}} n_S$. Define

$$U_{\mathcal{S}} = \{n_{\overline{\mathcal{S}}}x | x \in U_{n_{\mathcal{S}}}\} = n_{\overline{\mathcal{S}}}(U_{n_{\mathcal{S}}}, *, n_{\overline{\mathcal{S}}}) \cong U_{n_{\mathcal{S}}},$$

where $U_{n_S} = \{1, ..., n_S - 1\}$ is the group of units modulo n_S and let $U_{\emptyset} = \{0\}$.

Theorem

For any non-empty subset $S \subseteq I$, U_S is a subgroup of the multiplicative semigroup \mathbb{Z}_n , and is isomorphic to U_{n_S} . Moreover

$$\mathbb{Z}_n = \dot{\bigcup}_{S \subseteq I} U_S$$

is a strong semilattice of groups, $S[Y; U_S]$ in which Y is the boolean algebra P(I).

The structure maps are given by $\phi_T^S: U_S \to U_T$ for $T \subseteq S \subseteq I$

$$\phi_T^{\mathcal{S}}(x) = \left(n_{\overline{T}}\right)^{-1} x$$

where $(n_{\overline{\tau}})^{-1}$ is the inverse of $n_{\overline{\tau}}$ in $U_{n_{\tau}}$.

Joint work with Will Warhurst.

Suppose now that

$$n=p_1^{e_1}\dots p_m^{e_m}$$

with each $p_i > 0$.

What does \mathbb{Z}_n look like in this case?

Joint work with Will Warhurst.

Suppose now that

$$n = p_1^{e_1} \dots p_m^{e_m}$$

with each $p_i > 0$.

What does \mathbb{Z}_n look like in this case?

Theorem

If $n = p_1^{e_1} \dots p_m^{e_m}$ where each p_i is prime and each $m_i > 0$, then \mathbb{Z}_n is a semilattice of stratified extensions of groups

$$\mathbb{Z}_n = \mathcal{S}[\mathcal{P}(I); R_e]$$

where $I = \{1, ..., m\}$ and each R_e is a stratified extension of a group.

Define the *base* of a semigroup *S* to be the subset

$$\mathsf{Base}(S) = \bigcap_{m>0} S^m.$$

If $\mathsf{Base}(S) = \{0\}$ or $\mathsf{Base}(S) = \emptyset$ then Grillet called this a stratified semigroup.

A semigroup S is then called a *stratified extension* of Base(S) if Base(S) $\neq \emptyset$.

The name signifying the fact that in this case S is an ideal extension of Base(S) by a stratified semigroup with zero.

Let S be a stratified extension of Base(S).

- The *layers* of S are defined to be the sets S_m = S^m \ S^{m+1},
 m > 1;
- Every element of S lies either in the base of S or in exactly one layer of S, and if $s \in S_m$ then m is the *depth* of s.
- If S has finitely many layers then the numbers of layers is called the *height* of S.
- The layer S₁ generates every element of S \ Base(S) and is contained in any generating set of S.

Proposition

Suppose that S is a semigroup.

- **1** Reg $(S) \subseteq Base(S)$. Hence if S is regular, Base(S) = S.
- ② E(S) = E(Base(S)).
- **③** If $s \in S \setminus Base(S)$ then $|J_s| = 1$, where J_s is the J−class of s.

Proposition

Let T and R be any semigroups. Then there exists a stratified extension S such that $T \subseteq \mathsf{Base}(S)$ and $S/T \cong R$. Moreover, if R is stratified without a zero then $T = \mathsf{Base}(S)$.

Let $n = p_1^{e_1} \dots p_m^{e_m}$ where each p_i is prime and each $m_i > 0$.

$$\mathbb{Z}_n = \mathcal{S}[\mathcal{P}(I); R_e]$$

Let $e = \prod_{i \in K} p_i^{e_i}$ and let $R_e = \{x \in \mathbb{Z}_n | x^m = e \text{ for some } m\}$.

This is a stratified extension of $U_{n/e}$ where if $x \in R_e$ is in the i^{th} layer then

$$x = \prod_{i \in K} p_j^{g_i} u$$

where $u \in U_n$ and $0 < g_i \le e_i$ and $\min\{g_i | g_i \ne e_i\} = i$.

As an example, if $n = 12 = 2^2 \times 3$, then

$$\mathcal{P}(I) = \{\{2,3\},\{2\},\{3\},\emptyset\}$$

and we have four subsemigroups

 $R_{\{2,3\}} = \{6,12\}$ where $Base(R_{\{2,3\}}) = \{12\}$.

 $R_{\{2\}} = \{2, 4, 8, 10\}$ where Base $(R_{\{2\}}) = \{4, 8\}$ and $\{2, 10\}$ forms layer 1.

 $R_{\{3\}} = \{3, 9\}$ which is a group.

 $R_{\emptyset} = \{1, 5, 7, 11\}$ which is the group of units mod 12.

The semilattice structure can be pictured as

